3T D TI3BI 165!

A,

{1983

A GENERALIZATION OF THE MIXING-LENGTH THEORY
OF TURBULENT CONVECTION

EpwarDp A. SPIEGEL
Department of Physics, New York University, New York 3, N.Y.
Received December 8, 1962

ABSTRACT

The mixing-length theory as currently employed is valid only when the mixing length is sufficiently
small. The present work attempts to remove this limitation by writing a heat-transfer integral for con-
vecting fluid elements. There then follows an integrodifferential equation for the mean temperature in a
convecting medium. It is indicated how this equation may be used to include the effects of penetration
into convectively stable regions from adjacent stable regions.

I. INTRODUCTION

The mixing-length theory of turbulence continues to be the principal theory in use for
calculating convective heat fluxes in stars, in spite of severe doubts as to its validity and
accuracy. It therefore seems reasonable to attempt to strengthen this theory as much as
possible, though the need for a fundamentally better theory should not be overlooked or
forgotten. The present note describes an attempt to remedy one deficiency of mixing-
length theory as it is currently used, namely, the requirement that the mixing length be
small. That this restriction is indeed inherent in the mixing-length theory in its present
form will be shown in the next section.

The significance of the limitation to small mixing lengths may be seen from a combina-
tion of observational (Schwarzschild 1959) and theoretical studies (Vitense 1953). These
permit one to say with fair certainty that the transition layer between the zones of radia-
tive and convective equilibrium in the sun is of the order of a very few scale heights in
thickness. Moreover, current ideas on stellar convection (Vitense 1953; Schwarzschild
1961) suggest that the mixing length is also of the order of the scale height. Hence the
form of the mixing-length theory as now used is inaccurate in the transition layer in the
same sense that the Eddington approximation in radiative-transfer theory fails near the
top of a stellar atmosphere.

The idea underlying the present work is to write a transport equation for convecting
masses of gas without appealing to the small mean-free-path approximation which usu-
ally enters the mixing-length theory. Our considerations will therefore produce an expres-
sion for convective heat flux which is an integral over the atmosphere analogous to the
flux integral of radiative transfer. For the interior of the convection zone, the expression
for the flux must reduce to that used in the customary mixing-length theory. We begin
our discussion, therefore, by reviewing in the next two sections the equations for convec-
tive transfer currently in use. The subsequent sections will then treat the more general
case.

II. THE MIXING-LENGTH APPROXIMATION

The starting point of the mixing-length theory for convective heat transfer is the exact
equation

® = pCuwh , )

where @ is the convective heat flux. We restrict ourselves to a plane-parallel atmosphere
with the z-axis pointing upward. A horizontal overbar denotes averages over x and v, the
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horizontal co-ordinates; w is the vertical velocity; and 6 is the fluctuation temperature.
The total temperature may be written

T(%, 9,2 1) = T(z)+ 0(x,y,31) . @

The mixing-length theory as used by Prandtl simplifies equation (1) in the following
manner. First we assume that, at a given (¥, ¥, 2), the fluctuation temperature is due to
the arrival of a convective element from the point (x, ¥, 20). If we assume further that, at
%0, the convective element was at the local ambient temperature, we may write

T(2,9,8) =T(s) + oo (s =50 + -+ . , @

where d7'/dz is the total temperature gradient as experienced by the convective element.
We may also write the Taylor series for 7° (z)

T(z)=T(zo)+E(z—zo)—l—... . 4)
Hence, from equations (2), (3), and (4), we have
0(x,5,3)= é-1—1—11—)(.% Z0) + . (5)

In calculating ® with the Prandtl theory, one now retains only the leading term in equa-
tion (5) and identifies 2(z — 20) with a characteristic mixing length, /. Equation (1) may
then be written

& = 1 pCywl s

where each quantity on the right-hand side of equation (6) is given a characteristic
value. The replacement of an average of a product by the product of averages is com-
pensated by the phase factor w. As in most mixing-length studies, we will here adopt
w = 1, though a smaller value (~%) is undoubtedly called for when turbulent conductiv-
ity is la.rge

It is quite clear from this development that equation (6) will not be accurate unless
is in some sense a small quantity. Presumably, / should be small compared with the dis-
tance over which mean quantities, such as T, vary appreciably. Unfortunately, in model-
atmosphere calculations this condition is not always met. In particular, the important
transition zone in the sun between the regions of radiative and convective equilibrium is
of the order of ] (Vitense 1953) in thickness.

It is the aim of the present paper to develop an expression for ® which does not require
! to be small. In doing this, we shall retain most of the other approximations of the
current mixing-length theory. It will be useful, therefore, to have before us the equations
of the theory as it is now used. In the next section we set these down.

al dT) ©

III. THE MIXING-LENGTH FORMALISM

In order to specify a complete set of equations for the structure of a convective zone,
we must supplement equation (6) with expressions for w and d7/dz. In the first astro-
physical applications of mixing-length theory, d7/dz was taken to be the adiabatic
gradient. However, Opik (1950) and Mrs. B6hm (Vitense 1953) have shown that radia-
tive energy loss by a convective element may significantly alter the efficiency of convec-
tion. Hence a more complicated expression for d7'/dz is needed. The radiative corrections
and the dynamical calculations of w have been made at the same level of precision as the
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derivations given in the preceding section. The resulting set of equations given by Mrs.
Bohm is now standard in calculations of stellar structure. We shall summarize these
equations here.

The mixing-length formalism is best summarized by the following equations:

=} pCy z(dT dT, m
/
i) (-2
and
(dT/dz) — dT/dz) —%wlpCp. ©

(aT/d3)ap— (dT/dz) °* K
Here (dT/dz)p is the adiabatic gradient, and K is the radiative conductivity. To these
equations we must add the conservation equation,

H=2+7, (10)
where D is the total flux and §§ is the radiative flux; 9 is a constant, and, for §, one

normally enploys the expression JT

§=—-K . an

Equations (7)-(11) are then a complete set of equations from which we may calculate
T(z), given D, an expression for I, an auxiliary expression for K, and the hydrostatic
condition. Such calculations have been performed for a number of spectral types.

By algebraic substitutions, an equation for convective heat flux can be obtained; this

is
(pcp)—z»/a(gal) @34 3¢ (gal4> (pCp)=1/3 B1/3 — g“ﬂl =0, (12)

where
K= p—Ié——, (13)
B= — — —_ ( (14)
and
a = % . (15)

Since equation (12) is quadratic in ®'/3, we may solve for ®. We find, on taking the
appropriate root, that

_ 16(3 x)-" gaplH\1/2
&= pC, ga.l 1—|—(1-|— ) ] . (16)

Now expression (16) may be expressed more succinctly in terms of the growth rate of
normal-mode analysis. In this analysis, with the neglect of fluctuating non-linear inter-
actions, one finds a time dependence like e for each normal mode. If the normal modes
are approx1mated by sinusoidal functions with horizontal wave number &, and total
wave number &, we have (e.g., Ledoux, Schwarzschild, and Spiegel 1961)

__ﬁ—_z_z _ _ 4y gaf  4k2]V2
=" k2§1 [1 GE )’ (xd+v)? k“] g an
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Here B is the constant linear gradient for the static state and » is the kinematic viscosity.
For astrophysical convection, » << k, and we have

_ B[ £af 4ke\
n = 2[ 1+<1+ pe) k“) ] (18)

Within the spirit of mixing-length theory we shall set

w
k=7 19)
adopt the shape of the most unstable modes, i.e.,
k2=3%kR2, (20)
and assign local values to 8. Then we find
14\1/2
n=%l—l;[—1+(1+2_g7:z‘ﬂk_2> ] 1)

We note that the expression for 7 is very much like part of expression (16) for ®. There

are some differences in factors of , and we shall here adopt the numerical factors as they

appear in equation (21). This is not a fundamental matter, since we have no secure

knowledge of /, and the uncertainties are at least as great as factors of . We may write,

finally,

- Pcpnal2 .
ga

This general form for ® could be derived also by dimensional arguments if / and »~! are
adopted as the characteristic length and time. It may be of interest to recall here that in
the Boussinesq approximation convection can occur in a layer with free boundaries
whenever the Rayleigh number exceeds the value

o= 27 (22)

R, = 2L xt. (23)

IV. THE CONVECTIVE HEAT FLUX

In this section we shall derive an equation for ®, the convective heat flux, which does
not require that / be small. We shall retain the notion of convective elements and associ-
ate with them a mean-free path, or mixing length, /. We begin by describing the aggregate
of convective elements by a distribution function ¢(x;, v;, ¢), where x; and v; are vector
position and velocity and ¢ is a number density in (x;, v;)-space. In the usual way we
may derive the conservation equation,

9¢ , 9 d

al axj( vie) + dv;

('U'j¢>)=q—%¢l, (24)

where ¢ is a source term and the term v¢/! describes the disappearance of convective
elements at the ends of their paths. The quantity » is the speed associated with v; and
the prime denotes differentiation with respect to 2.

To understand equation (24) we must recall that in mixing-length theory it is assumed
that at each point in the atmosphere there is a unique (or at least a well-defined mean)
scale of the convecting elements. To each position there is also assigned a fixed value of
. The change in the properties of a convecting element as it travels in the buoyancy and
pressure fields is described by the driving term 8(v';¢)/dv;. The source term, ¢, represents
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the initial creation of convective elements either because of statistical fluctuations in the
medium or by non-linear effects, which we shall not discuss explicitly.

In the present approach we shall combine the driving term with the source term and
discuss their determination in the next section.

For the case of interest here, the steady-state plane-parallel case, equation (24) then

becomes
d
M (dvz¢) l = {1, 25
where
G=q-— ——( i) (26)

and p is the direction cosine with respect to z.

Equation (25) resembles the equation for radiative transfer in a gray medium. This is
true because we have assumed a unique / and v describing convective elements at each
height in the atmosphere.

Let us now introduce the variables ¢ and ¢ defined by

Y = ¢ @n
and
do= — dl_z . (28)
Equation (25) then transforms into
M Z_‘é =y — Q ’ (29)
where
Q=aql. (30)
The formal solution for equation (29) is (e.g., Chandrasekhar 1950)
f Q(s)exp >0
Vo, ) = o
f 0 0<0.
In writing this solution we have assumed that
YO, uw) =0 for u<O0. (32)

Now, let e, be the energy excess of an outward-moving convective element. The out-
ward convective heat flux then is

1
®4(a) =21rf e+uddu. (33)
0
Transformations familiar in transfer theory permit us to rewrite this as
<I>+(a)=21rf e+Q(s)Ey(s—o)ds, (34)

where E, is the second exponential integral. Similarly if e_ is the energy excess of inward-
moving masses, the back-flux is

q>_(a)=—27rf"e_Q(s)E2(a—s)ds. 35)
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The net flux is given by
d = (I).'. + P_ . (36)

In the context of mixing-length theory we must naturally set

e. = —ey, 37

where ey is presumably positive. This means that the downward flux of gas masses pro-
duces an upward flow of heat. We find, then, that

<1>=21rf0°°£)(s)E2(|s—a|)ds (38)

where

2 =e0. (39)

In order to complete the specification of heat flux we must give an expression for Q,
and we shall take up this question in the next section. At this point, however, we may
remark that equation (38) is the formal generalization that we should like to propose for
computing convective heat fluxes in regions where the mean properties vary rapidly.
Though we have used most of the approximations of mixing-length theory in arriving at
this equation, we have nowhere required / to be small.

V. AN EXPRESSION FOR )

To derive from first principles an expression for the “source” function, £, we would
have to turn to the dynamics of the driving term in equation (24). The calculations
which are called for are similar to those which underlie the derivation of equation (8).
Indeed, we can do no better than this in the context of mixing-length theory, since we are
necessarily in ignorance of the details of turbulent dynamics. These difficulties lead us to
attempt to by-pass the dynamical equations by connecting our present approximation
directly to the usual mixing-length theory. We may do this by recognizing that our pres-
ent theory should be equivalent to the Prandtl-type theory when the mixing length is
sufficiently small.

The equivalence of the generalized theory with the Prandtl-Vitense theory must ap-
pear when we consider the convective flux deep in the unstable layer where the mixing
length is effectively small. There is here a close analogy with radiative transfer, which
reduces to a short photon mean-free-path theory (Eddington approximation) at large
optical depth. Our intention here is to take advantage of this reduction in suggesting an
expression for Q.

In the appendix we shall derive an asymptotic expression for ® at very large o. The
result of this calculation leads us to

Q=L 8+0(c) 40
27

for large o. In deriving expression (40), it is necessary to use the fact that, at large o,
there is convective equilibrium, so that ® ~ .

It is interesting to compare equation (40) with the corresponding asymptotic limit of
radiative-transfer theory. There the source function is asymptotically linear in optical
depth for large optical depth. The difference is due to the property of convective heat
flux that downward-moving elements convect heat upward.

Consistent with the reasoning we have followed here, we may combine equations (40)
and (22) to obtain
27w pCyn3l?

Q= 16 P (41)
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which is valid for large ¢. It must be stressed, however, that we have not reduced the
right-hand side of equation (41) to its asymptotic limit for large ¢. In this limit the
Péclet number, wl/k, becomes large, and turbulent conductivity dominates radiative
conductivity. The general form expressed in equation (41), however, includes both radia-
tive and turbulent effects.

Our problem now is to suggest a form for Q that is valid at small ¢. To do this, we
first try to generalize our expression for 1. As we have defined it, 5 depends on the local
value of the gradient, 8. This local property enters the usual mixing-length theory when
the buoyancy force on a convective element is approximated by its value at the center of
the element. However, when / is not small, such evaluation is not adequate, and the value
of 8 and of n must be representative of the entire convective element rather than just the
center.

To generalize the expression for 7 to the case of large [, we replace 8 in equation (21)
by an appropriate average, 8,. Variational calculations suggest that 8, may be repre-
sented by

z+1/2
f w2(z')B(z")dz’
Bu(z) = z::{f/z . @2)
f w2(z')ds’

—=U/2

With this replacement, equation (21) for » is (at least approximately) applicable to the
case of large /.

Returning, then, to the choice of Q, we note that expression (41) is the form which
follows from dimensional reasoning if the new 5! is the unit of time and / is the unit of
length. Hence the simplest and most natural generalization of Q to the case of large I
(or small ¢) is expression (41), with  given its new meaning through equation (42). For
calculational purposes, the choice

w(z')=sin%(z—z’+%l) (43)

is then a convenient and reasonably accurate form for use in evaluating 8, by expression
(42).
VI. THE EQUATION FOR T

We may now combine equations (10), (11), and (38) to obtain

@ aT
21r/(; Ez(ls—al)Q(s)ds—KE—z—=SZ>, (44)

which we must solve for T. For Q we have expression (41), which is in turn supplemented
by equations (21) and (42). The total flux, &, is also given, being related to the effective
temperature by

O = oT:. 45)

The mixing length, [, on the other hand, remains highly uncertain, and we shall not offer
any suggestions here as to its possible values.

It remains only to specify the nature of the boundary of the convection zone. This
boundary is not sharp but represents a gradual transition between the radiative and con-
vective zones. In her treatment of the problem, Mrs. Bshm (e.g., Vitense 1953) takes the
depth at which dT/dz = dT/dz as the edge of the convection zone. This choice neglects
convective transfer by elements which penetrate up into the region of stable temperature
gradient. A similar choice is possible here, but it seems preferable to try to calculate the
heat transfer by the penetrative convection,
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Thus we suggest that equation (44) be used as long as any convective transfer results
from the integral expression. One complication is that when 3, becomes negative, 5 in the
expression for 22 will become complex. It will, however, have a negative real part. The
procedure should then be to take only the real part of # as a measure of the damping of
the convective motions. Hence, when 7 becomes negative, so will Q, and the integral
expression in equation (43) will approach zero as higher levels in the atmosphere are
approached. At the level where the integral just vanishes, the gradient is radiative, and
this marks the edge of the convective zone. At higher levels the equations of radiative
equilibrium obtain. (Similar considerations apply to the lower boundary of the convec-
tion zone.)

VII. CONCLUDING REMARKS

In assessing the usefulness of our proposed generalization of the mixing-length theory,
we must review briefly the basis of the theory itself. To begin with, it should be stressed
that the word tkeory in this context is perhaps a misnomer. Many authors have empha-
sized that the mixing length is to be taken as an empirical quantity which serves as a
parameter describing turbulence. The equations presented in the theory are then just a
convenient formalism devised for parameterizing the turbulent processes. That the equa-
tions are based on approximate physical pictures is necessary to make the empirical
description flexible and accurate enough to accommodate the complexities of turbulent
dynamics.

The motivation of the present work, then, is to add further structure to the mixing-
length formalism in the hope that the improved version will make a better representation
of turbulent convection possible. It seems plausible that this end may be achieved by
building the formalism on a more accurate physical model than has been used previously.
The present picture, however, must still be regarded as a formalism for describing stellar
convection rather than a complete theory, though the hope is that it may make possible
a more accurate description than is possible with the short-mixing-length approximation.

Of course, the necessities of astrophysical application perhaps make this view of the
mixing-length theory too restrictive. There is scant hope of an appropriate empirical
determination of the mixing-length parameter, and it is necessary to make plausible esti-
mates of the mixing length in order to calculate models. The inherent uncertainty of this
procedure is clear from the known sensitivity of the models to the choice of mixing
length. However, alternative approaches to the problem (e.g., Malkus 1954; Ledoux,
Schwarzschild, and Spiegel 1961; Spiegel 1962) equally have their difficulties, and this
has encouraged the author to attempt the present improvement of the mixing-length
theory.

In conclusion, the author thanks Drs. G. B. Field and R. H. Kraichnan, whose com-
ments on an early manuscript of this paper have led to an improved presentation of the
work. He wishes also to express his indebtedness to the Office of Scientific Research of the
U.S. Air Force for support under contract AF49(638)1065.

APPENDIX
Asymproric ForM FOR P

We wish here to consider the asymptotic limit of expression (38) for ® as ¢ tends to infinity.
We begin by rewriting equation (38) as

&(o) =21rf°°£1(s)E2(s—a)ds
(46)

+27rf0b(s)122(a—s)ds,
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With simple changes in integration variables, this becomes

®(o) =2r£wﬁ(y+ o)Ex(y)dy

(47)

+z1rfob(a—y)E2<y)dy.

The function Es(y) is peaked about y = 0, and, to approximate the integrals of equation (47),
we may expand L in Taylor series about y = 0. In this we take for granted absolute convergence
in the domain of the convecting layer.

The series we need are

@<y+a)~§) Q™ (0) 97,

n—0

(48)
@(a—w—z( S Qe (o) g7,

where Q™ denotes the nth derivative of . If we introduce these series into equation (47), we
obtain, after some elementary operations,

—q:( ) = 2 — Q0 (o)

+E2<a)2( o) e

(49)

+E1(a>2( +2)'Q(")(0')a"

—30 g n+ 2 ) | Q("')( ) Wnt1yrz, (nt2)/2( ) a™T12,

where W,, g is the Whittaker function (Magnus and Oberhettinger 1954). If we consider large
values of ¢, equation (49) reduces to

——<1><o) = 2-——-£><2n><a>+o<e—v>, (50)

since Ey, Es, and W,, g are exponentially small.

Equation (50) is a differential equation whose solution gives the relation between L2 and & for
large o. The homogeneous solution is a linear combination of functions of exponential order.
Those of positive exponential order must be discarded for realizability, those of negative order
are negligible at large ¢. We are left with only the particular solution to determine, but first we
introduce a further approximation. We shall assume that, for large o, the convective flux
dominates the radiative flux, so that & may be considered constant at large o. Equation (50)
then leads us to

Q=—1— ®+0(e). (51)
27
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Equation (51), which asserts that £Q approaches a constant at large o, differs from the cor-
responding result of radiative-transfer theory. There one derives that the source function in
LTE becomes linear in optical depth at large optical depth. The reason for the difference is that
downward-descending gas masses produce an upward flux of heat in mixing-length theory, while
inward- and outward-directed beams of radiation work at cross-purposes, as far as flux is con-
cerned.
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